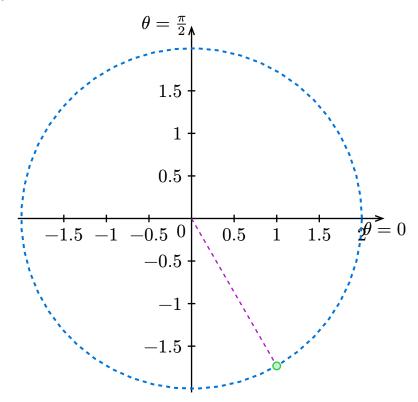
Polar coordinate

A polar coordinate $P(r,\theta)$ is represented by r,θ where r is the modulus and θ is the angle between OP and positive x-axis

e.g Plot $(2, \frac{5}{3}\pi)$ on polar coordinate.



The blue circle is r=2 which is the set of all points that satisfies the conidition "distance from origin point is 2".

The violet line has an angle of $\theta = \frac{5}{3}\pi/-\frac{\pi}{3}$ between positive x-axis and the line.

Hereby,
$$\theta \in (-\pi,\pi], r > 0$$

Note: Most graphing software (including desmos) accepts r < 0, this is not allowed in A-level exams except special circumstances where you plot the case r < 0 in dashed line.

Their intersection is the point on polar.

Relationship with Cartesian coordinate.

it can be easily observe that you can plot the same point in cartesian coordinate using

$$x^2 + y^2 = 4$$

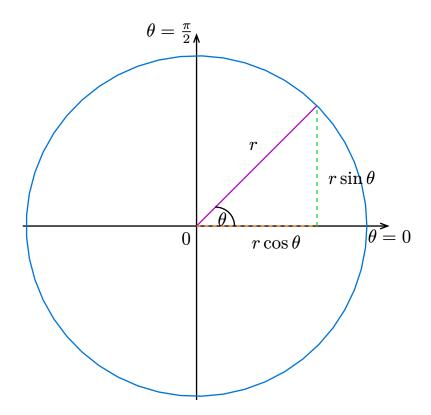
$$y = \tan\left(\frac{5\pi}{3}\right)x$$

More generally

$$r = \sqrt{x^2 + y^2}$$

$$\theta = \tan^{-1}\left(\frac{y}{x}\right)$$

By obeserving the unit circle we can have the transformation vice-versa.



Thus you can convert the polar coordinate into cartesian coordinate by using.

$$x = r \cos \theta$$

$$y = r\sin\theta$$

Curves

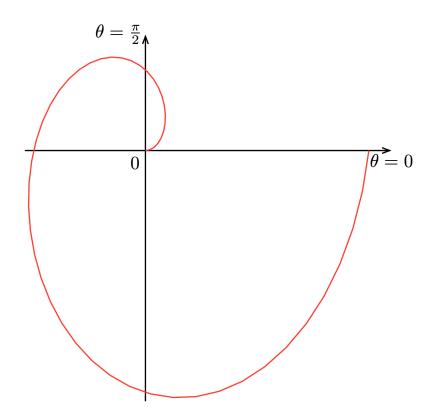
Recommended method to draw curves in the exam:

- 1. transform the polar curve into parametric curve
- 2. use calculator's table function to calculate the set of points.
- 3. connect the points using smooth curve.

Here are some common cases.

1. Sprials and its variations

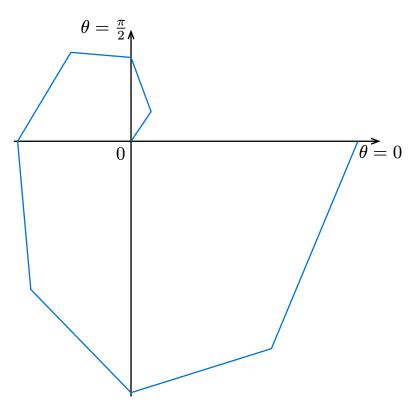
1. represented by $r = a\theta$ where a is a constant.



Example table (take $r = \theta$ as an example)

θ	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π	$\frac{5\pi}{4}$	$\frac{3\pi}{2}$	$\frac{7\pi}{4}$	2π
r	0	$rac{\pi}{4}$							

This is how it looks if you plot them on the coordinate and connect them with straight line.

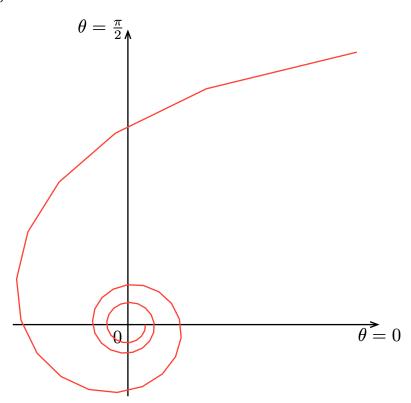


 $2. \ r = ae^{k\theta}$



3.
$$r = \frac{a}{\theta}$$

Here. $\lim_{\theta \to 0} r = \infty$

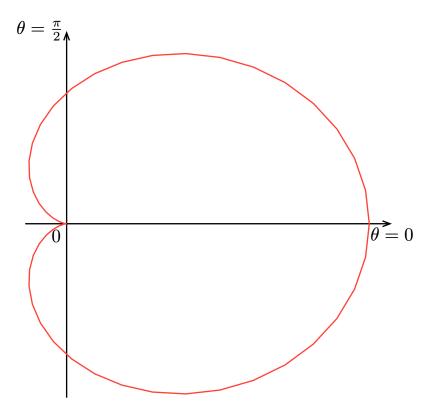


2. Cardioids and its variations

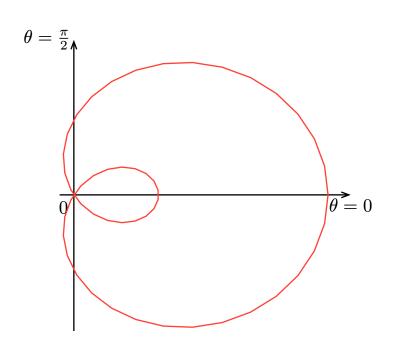
defined by $r = a + b \cos \theta$

Three cases, different cases the functions look different.

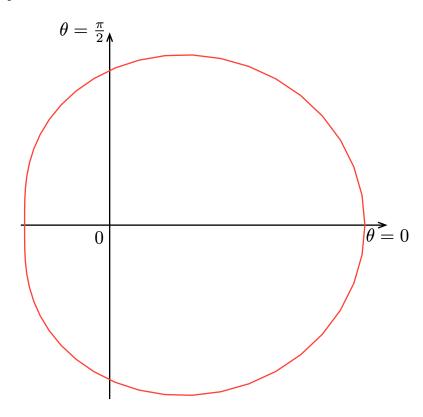
Case 1: a = b



Case 2: a < b



Case 3: a > b

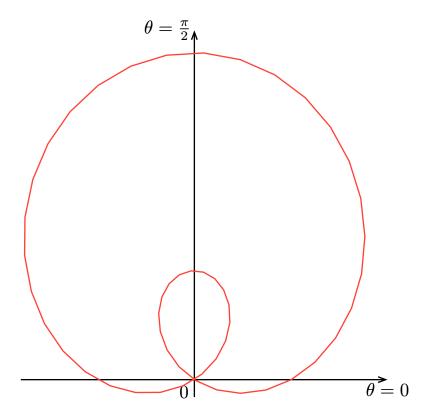


Its variation: $r = a + b \sin \theta$

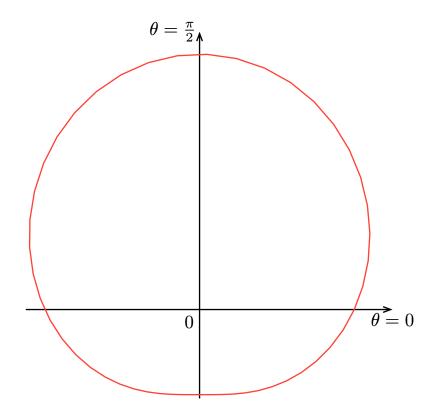
1. a = b



2. a < b



2. a > b



It's just turning from symmetrical to x-axis into symmetrical to y-axis.

Calculate surface area.

Recall the area of sector: $A = \frac{1}{2}r^2\theta$

Then the area is:

$$A = \int_{\theta_1}^{\theta_2} r^2 \, \mathrm{d}\theta$$

where $\theta_1 < \theta_2$

The area between to curves are:

$$A = \frac{1}{2} \int_{\theta_1}^{\theta_2} (r_2^2 - r_1^2) \ \mathrm{d}\theta$$

Finding Maximum/Mininum

it's actually just stationary point but polar version.

- 1. For finding maximum/minimum distance from the origin: use $\frac{\mathrm{d}r}{\mathrm{d}\theta}=0$
- 2. For finding maximum/minimum distance from the $\theta=0$ line: use $\frac{\mathrm{d}y}{\mathrm{d}\theta}=0$
- 3. For finding maximum/minimum distance from the $\theta = \frac{\pi}{2}$ line: use $\frac{dx}{d\theta} = 0$